- - home - - - research - - - students - - - courses - - - publications - - - vitae - - |
21. A conservative discontinous-Galerkin-in-time (DGiT) multirate time integration framework for interface-coupled problems with applications to solid-solid interaction and air-sea models,
J.M. Connors, J. Owen, P. Kuberry and P. Bochev, Comp. Meth. Appl. Mech. Enrg., Vol. 426, 2024. (link)
20. An H1-conforming solenoidal basis for velocity computation on
Powell-Sabin splits for the Stokes problem,
J.M. Connors and M. Gaiewski, Int. J. Numer. Anal. Mod., Vol. 21, 2024. (link)
19. A multirate discontinuous-Galerkin-in-time framework for interface-coupled problems,
J.M. Connors and K.C. Sockwell, SIAM J. Num. Analysis, Vol. 60, No. 5, 2022. (link)
18. An unconditionally stable, high-order and flux-conservative fluid-fluid coupling method,
J.M. Connors and R.D. Dolan, Journal of Computational and Applied Mathematics, Vol. 410, 2022. (link)
17. A steepest descent algorithm for the computation of traveling dissipative solitons,
Y.S. Choi and J.M. Connors, Japan Journal of Industrial and Applied Mathematics, Vol. 37, pp. 131-163, 2020. (link).
16. Stability of two conservative, high-order fluid-fluid coupling methods,
Jeffrey M. Connors and Robert D. Dolan, Advances in Applied Mathematics and Mechanics, Vol. 11, No. 6, pp. 1-52, 2019. (link).
15. A defect-deferred correction method for fluid-fluid interaction,
Mustafa Aggul, Jeffrey M. Connors, Dilek Erkmen and Alexander E. Labovsky, SIAM J. Num. Analysis, Vol. 56, No. 4, 2018,
pp.2484-2512.
(link)
14. An ensemble-based conventional turbulence model for fluid-fluid interaction,
Jeffrey M. Connors, Int. J. Num. Analysis Model., Vol. 15, No. 4-5, 2018, pp. 492-519.
(link)
13. Quantification of errors for operator-split advection-diffusion calculations,
Jeffrey M. Connors, Jeffrey W. Banks, Jeffrey A.
Hittinger and Carol S. Woodward, Computer Methods in Applied Mechanics and Engineering, Vol. 272, No. 15, 2014,
pp. 181-197.
(link)
12. A method to calculate numerical errors using adjoint error estimation for
linear advection,
Jeffrey M. Connors, Jeffrey W. Banks, Jeffrey A.
Hittinger and Carol S. Woodward, SIAM J. Num. Analysis, Vol. 51, No. 2, 2013,
pp. 894-926.
(link)
11. A posteriori error estimation via nonlinear error transport with application
to shallow water,
Jeffrey W. Banks, Jeffrey A. Hittinger, Jeffrey M.
Connors and Carol S. Woodward, Recent Adv. Sci. Comput. Appl., Contemporary
Mathematics, Vol. 586, 2013, pp. 35-42.
(link)
10. Multiphysics simulations: challenges and opportunities,
David E. Keyes, ..., Jeffrey M. Connors et. al., Int. J. High Perfor.
Comput. Appl., Vol. 27, No. 1, 2013, pp. 4-83.
(link)
9. Numerical error estimation for nonlinear hyperbolic PDEs via nonlinear
error transport ,
Jeffrey W. Banks, Jeffrey A. Hittinger, Jeffrey M.
Connors and Carol S. Woodward, Computer Methods in Applied Mechanics and
Engineering, Vol. 213-216, 2012, pp. 1-15.
(link)
8. A fluid-fluid interaction method using decoupled subproblems and differing
time steps,
Jeffrey M. Connors and Jason S. Howell, Numerical Methods for
PDEs, Vol. 28, No. 4, 2012, pp. 1283-1308.
(link)
7. Decoupled time stepping methods for fluid-fluid interaction,
Jeffrey M.
Connors, Jason S. Howell and William W. Layton, SIAM Jour. Num. Analysis, Vol.
50, No. 3, 2012, pp. 1297-1319.
(link)
6. Stability of algorithms for a two domain natural convection problem and
observed model uncertainty,
Jeffrey M. Connors and Benjamin Ganis,
Computational Geosciences, Vol. 15, No. 3, 2011, pp. 509-527.
(link)
5. On small-scale divergence penalization for incompressible flow problems via
time relaxation,
Jeffrey M. Connors, Eleanor W. Jenkins and Leo G.
Rebholz, Int. Jour. of Computer Mathematics, Vol. 88, No. 15, 2011, pp. 3202-3216.
(link)
4. Partitioned time discretization for parallel solution of coupled ODE
systems,
Jeffrey M. Connors and Attou Miloua, BIT, Vol. 51, No. 2, 2011,
pp. 253-273. (link)
3. Convergence analysis and computational testing of the finite element
discretization of the Navier-Stokes-alpha model,
Jeffrey M. Connors,
Numerical Methods for PDEs, Vol. 26, No. 6, 2010, pp. 1328-1350. (link)
2. On the accuracy of the finite element method plus time relaxation,
William J. Layton and Jeffrey M. Connors, Mathematics of Computation, Vol. 79,
No. 270, 2010, pp. 619-648. (link)
1. Partitioned time stepping methods for a parabolic two-domain problem,
Jeffrey M. Connors, Jason S. Howell and William W. Layton, SIAM J. Num.
Analysis, Vol. 47, No. 5, 2009. (link)